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ABSTRACT
We present bio-inspired computation techniques, such

as genetic algorithms, for real-time self-deployment of
mobile agents to carry out tasks similar to military appli-
cations. Under the harsh and bandwidth limited conditions
imposed by military applications, self-spreading of au-
tonomous mobile nodes becomes much more challenging.
In our approach, each mobile agent exchanges its genetic
information, which is composed of speed and direction
encoded in its chromosome (genome), with the neighbor-
ing nodes located in its communication range. A genetic
algorithm run at the application layer as a software agent
is used by each node to decide its next speed and direction
among a large number of choices so that the unknown ge-
ographical area can be covered uniformly under conditions
such as hostile attacks, natural (i.e., mountain, trees, lakes
etc.) and man-made obstacles. We implemented a simula-
tion software to quantify the effectiveness of the genetic
algorithms under different military operational conditions
(e.g., losing assets during an operation, the remaining
agents should reposition themselves to compensate the lost
in coverage and network connectivity). Metrics including
normalized area coverage, deployment time, avoidance
from obstacles over an unknown geographical area are
used to demonstrate the efficiency of the self-deployment
algorithm. The results show that genetic algorithms can be
applied to autonomous mobile nodes and be performed
as an effective tool for providing a robust solution for
network area coverage under restrained communication
conditions.

I. INTRODUCTION
Self-spreading of autonomous mobile nodes of a

mobile ad-hoc network (MANET) over an unknown
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geographical area to obtain a uniform area coverage has
many military applications such as search and rescue
missions, mine-field clearing, and self-spreading of assets
under harsh and bandwidth limited conditions. A genetic
algorithm (GA) can be used by each node to select the
”fitter” speed and direction options among exponentially
large number of choices converging toward a uniform
node distribution.

In a typical scenario, mobile agents in an unknown
terrain arrange themselves in such a way that the area
covered by the nodes is maximized and/or the nodes are
distributed uniformly Urrea et al. (2007b). Self-spreading
autonomous mobile agents over an unknown terrain
becomes more challenging under the conditions of
military applications: (i) the geographical area (i.e., the
focus of an operation) may change dramatically over
time because of highly dynamic nature of tasks, (ii)
number of nodes may decrease due to hostile attacks or
malfunctions, (iii) nodes may become isolated since they
may not have GPS or similar devices, (iv) communication
among the neighboring mobile nodes may be forced
to stop intermittently when the nodes are in a hostile
environment, and (v) mobile agents may have to be
deployed into a terrain from a single entry point as
opposed to an initial (e.g., random) distribution.

Our earlier work introduced a force-based GA
(FGA) (Sahin et al., 2008a,b; Urrea et al., 2008b)
inspired by the molecular force-based distribution in
physics as presented in (Heo and Varshney, 2003). In
FGA, the force on each node applied by its near neighbors
is used to calculate the next location and speed of the
node such that the force on the node is minimized. In this
paper, we study the effectiveness of FGA under a set of
conditions that may be present in military applications.
We consider self-spreading of mobile nodes toward a
uniform distribution while (i) avoiding arbitrarily placed
obstacles over an unknow terrain, (ii) loss of mobile
nodes, and (iii) intermittent stoppage of communication.
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The rest of the paper is organized as follows. The
related research in the area of genetic algorithms,
optimization techniques, and robotics applications are
summarized in Section II. Mobility model, and an
overview of FGA and related performance metrics
are described in Section III. The results of simulation
experiments are presented in Section IV. Section IV-B
includes the concluding remarks.

II. LITERATURE REVIEW

GAs are popular in many MANET and swarm robotics
applications. For example, self-deployment of mobile
nodes has been studied in a variety of contexts (Heo and
Varshney, 2003; Howard et al., 2002; Winfield, 2000).
In (Howard et al., 2002), mobile wireless sensors deploy
and organize themselves over a geographical area based
on cooperative robotics using the performance metrics
of uniformity of network topology, deployment time,
the percentage of the region covered, and the distance
traveled. (Winfield, 2000) discusses a mission scenario
in which mobile robots spread into a bounded area,
collect information using their sensors, and then return to
their meeting point. In (Hasircioglu et al., 2008), off-line
path planning for Unmanned Aerial Vehicles (UAVs) are
presented. Evolutionary algorithms are used to calculate
a curved path in 3-D terrain. The selection of network
parameters for MANETs using GAs are proposed in
(Montana and Redi, 2005).

GAs have also been popular in various distributed
robotic applications. In (Chen and Zalzala, 1995), a
genetic approach is presented with a distance-safety
criteria for a mobile robot motion. In (Shinchi et al.,
2000), the goal of autonomous robots is to move in
a highway and to reach a given destination without
any collision with the help of GAs. An adaptive GA
is discussed in (Gesu et al., 2004) to identify targets
while avoiding obstacles; the mobile robots collect
information from the environment with their video
cameras and light sensors, and run their own GA to
stay away from static and unknown blockages and
finally arrive at a given target. In (Pugh et al., 2005),
performance evaluation of a noise-resistant particle
swarm optimization for the unsupervised robotic learning
is presented. In (Garro et al., 2006), in a path planning
for the robotic applications, bio-inspired algorithms are
shown to be effective to optimize the path that a robot
takes to reach its assigned target. (Pugh and Martinoli,
2007) discusses the effects of unsupervised learning
techniques on robotic applications where the goal is
to allow robots to evolve their own controller in an
automated fashion. In (Tang and Jarvis, 2003), GAs
are utilized in a swarm of robots for the co-operative
task of unknown environment exploration. (Byington

Fig. 1. An 8x8 hexagonal area partioned into logical cells, Rcom = 3)

and Bishop, 2008) focuses on the design of a distributed
controller for cooperative locomotion in a swarm of
robotic agents; their goal is to design an algorithm such
that agents running decentralized controller are able to
grasp other robots and climb over one another so that
they can pass through test obstacles.

Our FGA for self-spreading autonomous mobile agents
in a MANET has key differences form the above cited
papers. We achieve uniform mobile node distribution
by using only a limited knowledge obtained from the
neighboring nodes and the local environment (location,
speed, and direction) in spite of arbitrary obstacles in
the terrain, mechanical malfunctions, asset losses, and
intermittent stoppage of local information exchange . We
assume that there is no prior knowledge of the terrain
and that the mobile agents enter an unknown enemy area
without any information and navigational map. Another
important difference is that FGA has fully distributed
intelligence without any leaders or central information
distributors. In other words, FGA turns simplistic nodes
with limited capabilities into an intelligent self-organized
system with distributed intelligence for effective and ef-
ficient solutions for terrain independent self-spreading.
Due to its operational simplicity, and flexibility, FGA can
be custom-tailored for effective battery consumption or
increased convergence speed (Sahin et al., 2008b).
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III. SELF-SPREADING OF AUTONOMOUS
MOBILE AGENTS USING GAS

A. Mobility Model and Objective
We define our geographical area as dmaxxdmax

divided into logical hexagonal cells. Each mobile agent
has ability to move into any of the six directions with
four different speeds (namely, immobile, slow, normal,
and fast speeds) in the hexagonal coordinate system. The
movement direction and speed for a node are determined
by its FGA. As an example, Fig. 1 shows an area with
64 logical cells and seven mobile nodes, each of which
can move into six directions in the hexagonal lattice (i.e.,
D0 through D5). A wireless link between two mobile
nodes is represented by a vector whose dimension is
in terms of hexagonal layers (one layer is equal to the
center-to-center distance between two neighboring cells).
In general, the wireless link state between a mobile
node in location (0, 0) and another in location (x, y)
is represented as < x − 0, y − 0 > = < x, y >. For
example, in Fig. 1, the vector representing wireless link
between a mobile node N3 in location (3, 4) and node
N5 located in (5, 3) is given as < −2, 1 >. Suppose R
is the center-to-center distance between any two mobile
agents. A wireless link between these nodes < x, y >
is called available, if and only if these two nodes can
communicate with each other; otherwise the link is said
to be unavailable (Urrea et al., 2008a). The available
wireless link implies 0 ≤ x, y ≤ Rcom ⇐⇒ R ≤ Rcom

where Rcom is called communication range. The number
of neighbors for a mobile agent is calculated from the
total number of nodes located in its communication
range. For example, the total number of neighbors for N3

in Fig. 1 is four for Rcom = 3 (i.e., N3 can communicate
with N1, N2, N4, and N5). Assuming that all mobile
nodes have the same communication range, Rcom = 3,
the hexagonal cells which are not located within the
communication range of any mobile agents are shown as
gray in Fig. 1. In other words, (1 − 26

64 )x100 = 59% of
the geographical area in Fig. 1 is located within at least
one mobile agent’s communication range.

B. Uniform Node Distribution
Our main target is to keep the network fully connected

among the mobile agents while covering a given
geographical terrain uniformly under realistic conditions
such as arbitrary obstacles in the terrain, stoppages due
to malfunctions and hostile attacks toward one or more
mobile nodes (i.e., either isolated or concentrated losses).
FGA aims to provide each node with a near-optimal
number of neighbors so that FGA can reach its target
with the least possible number of nodes.

GAs are a member of evolutionary algorithms and
work on a population of solutions set instead of dealing

with a single solution. GAs have been shown to be an
effective tool for providing heuristic solutions to many
NP-hard problems. Typically, a GA requires two metrics
to be defined: (i) a representation of the problem space
including a solution set, and (ii) a fitness function in order
to evaluate the goodness of each candidate solution with
respect to the given goal of a GA. Tournament is one of
the most popular selection methodologies utilized in GAs.
A classical tournament is run between two individuals
which may randomly be chosen from the population space.
When these individuals are compared regarding to their
fitness values, the one with better fitness is assigned as
winner, and is permitted to reproduce. Crossover is applied
to a chosen couple of chromosomes during reproduction
to generate two new offspring. There are different types
of crossover approaches in the GA implementations in-
cluding single-point, two-point, cut and slice, and value-
encoding crossovers. Mutation changes the order of the
genes within a chromosome or a gene’s value. Mutation
prevents the GAs from getting stuck at a local optimum.

C. Forced-based Genetic Algorithms (FGA)

In our earlier work, we introduced a force-based
GA (FGA) (Sahin et al., 2008a,b; Urrea et al., 2008b)
inspired by the molecular force-based distribution in
physics (Heo and Varshney, 2003). Each node is applied
a force by its near neighbors, which should be summed
up to zero at the equilibrium. If not, we can use this
force to calculate the next location and speed of the node
such that the force on the node is minimized. We should
note that, although inspired by the approach of (Heo and
Varshney, 2003), FGA is fundamentally different than
the deterministic algorithm given in (Heo and Varshney,
2003), where the mobile nodes are pre-distributed (up to
90% prior area coverage), do not have the capability to
change their speeds, and are controlled by a centralized
intelligence source. In FGA, all mobile agents enter the
unknown terrain from the same point (i.e., less than 10%
initial area coverage), they have the capability of moving
with four different speeds based on the local conditions,
and the intelligence is completely distributed. These
differences make FGA a much more realistic approach
for military applications.

There are three main objectives for achieving the
optimum self-spreading of mobile agents. The first is to
have a fully connected network. The second objective
is to maximize the area occupied by mobile agents
while minimizing the intersection between mobile nodes’
communication coverage. The third and last objective is
to provide an optimum number of neighbors for each
node depending on the network density. We showed that
this near optimal autonomous mobile node deployment
is possible if a mobile agent maintains its node degree
around its analytical mean, which is called as the mean
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node degree N (Urrea et al., 2008a). It is used by FGA
during fitness calculation.

A mobile agent collects information from its neighbor-
ing nodes about their speed, direction, location and runs
the GA to optimize its own direction and speed (Sahin
et al., 2008a; Dogan et al., 2008; Urrea et al., 2007a,b).
In our FGA implementation, a mobile agent uses the total
force applied to it by the neighboring nodes located in its
communication range to decide next direction and speed.
The force between two nodes is a function of the distance
between them and the number of other nodes located
within their communication range. After collecting local
information, each agent runs its own FGA to generate sev-
eral chromosomes representing candidate solutions for the
next generation. These candidates are ordered according to
their absolute fitness values from low to high (Sahin et al.,
2008a,b), where low fitness indicates better solution. The
software agent in each node runs FGA for g generations
in order to populate p chromosomes at each population.
At the last generation, the speed and direction which is
encoded in the ”fittest” chromosome are adapted by the
mobile agent to be used as the input parameters of its next
movement. The total force applied to a mobile node n is
found as follows:

F (n) =
k∑

i=0

k∑
j=0

N · (Rcom− | (x− xi) + (y− yj) |) (1)

where N is the mean node degree, k is the number of
neighbors, (x, y) is the current coordinate value for the
node, n is the node ID, and (xi, yj) is the location of a
neighbor node.

D. Performance Metrics

• Normalized Area Coverage (NAC): As one of the
most important metrics for self-spreading algorithms,
NAC value shows the portion of the geographical
terrain which can be located within at least one
mobile agent’s communication range. The goal of
our FGA is to obtain the highest possible NAC
value in spite of unknown obstacles, hostile attacks,
malfunctions, and silent mode.

• Deployment Time: This metric shows the total time
it takes for the mobile nodes to converge toward
a uniform distribution over a geographical area.
Deployment time includes communication overhead,
FGA processing time, and moving from one location
to another. This metric is essential to understand
the network recovery time (i.e., obtaining the best
NAC value) after loss of nodes due to attacks or
malfunctions, or following a silence mode.

IV. SIMULATION EXPERIMENTS
A. Software Tool and Applications

We implemented a simulation software where the
mobile agents are modeled using MASON, a discrete-
event multi-agent simulation tool developed in Java (Luke
et al., 2005). In our software, a user is able to assign
different values for the following input parameters:

• N : Total number of mobile nodes;
• Rcom : Communication range;
• Tmax : Maximum number of iterations;
• N : Mean number of available links;
• dmax : Size of the geographical terrain;
• Initial node distribution;
• Number and position of obstacles.

Fig. 2. Initial deployment of 80 nodes at T = 0

For the simlutation experiments, we consider 80
mobile agents with the same initial node distribution
over an unknown region. Each mobile agent has a
limited communication range (Rcom), and, hence, can
only be aware of its neighbors and the obstacles located
in the node’s sensing and communication range. The
initial mobile agent deployment and the positions of
the obstacles are shown in Fig. 2. We assume that it is
not possible for the nodes to communicate through the
obstacles.

We implemented FGA such that each mobile agent’s
movement is only affected by its current status of
neighboring nodes. Due to this flexible implementation,
we expect that each agent will be adaptive to the
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environment changes such as node failures, various
terrain shapes and obstacles, and hostile attacks. To
evaluate the performance and effectiveness of our FGA
algorithm, we consider two types of applications. In
the first application, the mobile agents are deployed in
a hostile region where some of the nodes are disabled
during and after the deployment. In this application,
the nodes are lost either due to equipment malfunctions
(i.e., isolated losses) or hostile attacks (i.e., concentrated
losses). The nodes affected by either malfunctions and
hostile activity are considered to be disabled for the
rest of that simulation experiment. After these losses,
the remaining nodes must reconfigure their positions to
compensate the missing area coverage due to lost team
members.

In the second application, mobile agents intentionally
stop communicating with the neighboring nodes located
within Rcom distance for short periods of time. This
application, called the silence mode, simulates the
conditions where the nodes need to go undetected by
hostile forces. During the silent mode, the nodes cannot
communicate with each other, and therefore, cannot
modify their speed and direction. We assume that, during
the silent mode, the nodes keep their direction and speed
that they had before they enter the silent mode. Since
their speed and direction remains uncorrected by FGA,
we expect that the NAC for will suffer during the silent
mode. At the end of the silent mode, the nodes resume
communications again.

B. Experiment Results

Fig. 3 shows the area coverage for a terrain which
has arbitrary obstacles after 400 steps (i.e., iterations)
of FGA. At this point of the experiment, there are three
nodes that are disabled doe to malfunctions (indicated
by small solid circles in Fig. 3). We can observe that,
in spite of these obstacles, the mobile nodes using FGA
obtain an almost uniform coverage of the area during the
first 400 steps of the first application.

At step T = 401, the first hostile attack takes place
and destroys three mobile nodes, as shown in Fig. 4. The
green square at the south-east corner of the region in
Fig. 4 represents the region where the enemy attacks take
place. In addition, one more mobile agent experiences
malfunction, reducing the total number of mobile nodes
to N = 73.

Fig. 5 shows the mobile node deployment at T = 600.
Between T = 401 and T = 600, another mobile node
becomes disabled due to malfunction. At this point, the
number of remaining mobile nodes is N = 73 of which

Fig. 3. Mobile node distribution for Application 1 at T = 400 (N = 77
after three disabled nodes)

Fig. 4. Mobile node distribution for Application 1 at T = 401 after
the first enemy attack (N = 73 after four disabled and three destroyed
nodes)
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two nodes are in the hostile region.

Fig. 5. Mobile node distribution for Application 1 at T = 600 before
the second enemy attack (N = 72 after five disabled and three destroyed
nodes)

At T = 601, the second enemy attack takes place
destroying the two nodes in the hostile region while
another node becomes disabled due to equipment
malfunction, reducing the number of nodes in the
experiment to N = 69. Fig. 6 shows the screen shot
over the geographical area after the second enemy attack,
which illustrates that the remaining mobile nodes keep
performing FGA, and readjust their positions for a
uniform area coverage.

The final mobile node distribution after running FGA
for T = 1000 steps is presented in Fig. 7, where the
remaining nodes readjust their positions to compensate
for the missing nodes. At this point two more nodes
are disabled bringing the total of disabled nodes due to
equipment malfunction to eight and total of destroyed
nodes due hostile attacks to five (N = 67). The network
is considered fully connected at this point since all the
nodes in the network are reachable by others through
either one-hop or multi-hop communication.

Fig. 8 shows the convergence of FGA in terms of
NAC through the iterations. The blue line in Fig. 8
illustrates that mobile nodes using FGA successfully
deploy themselves around the obstacles if there were no
hostile activity in the area, achieving a NAC value of
99% at T = 1000. Meanwhile, the red line represents the
NAC when the nodes undergo malfunctions and hostile
attacks. We can observe that the mobile nodes cover

Fig. 6. Mobile node distribution for Application 1 at T = 601 after
the second enemy attack (N = 69 after six disabled and five destroyed
nodes)

Fig. 7. Final mobile node distribution at T = 1000 with n = 69
(N = 67 after eight disabled and five destroyed nodes)
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approximately 97% of the total area at T = 400.
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Fig. 8. Convergence of FGA in terms of NAC after T = 1000 steps
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due to equipment malfunction)

After the first attack at T = 401, there is a drop
in NAC due to the lost seven nodes, which recovers
after 200 steps (T = 600) to the NAC value of 95%
(Fig. 8). Similarly, after the second attack, there is a drop
of NAC at T = 601, which is then compensated by the
remaining nodes after they reposition themselves using
FGA approximately 300 steps after the second attack
(T = 1000).
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Fig. 9. Convergence of FGA in terms of NAC after 1000 steps for
Application 2 (the three silent modes are T = 100− 300, T = 400−
600, and T = 700− 900)

Fig. 9 shows the NAC for the silence mode application
where the mobile agents intentionally stop communicating
with their neighbors during short periods of time. In the
experiment, the nodes perform FGA for 100 consecutive

steps until T = 100 and then become silent for 200 itera-
tions until T = 300. Similarly, the silent mode is repeated
for 200 iterations between T = 400 − 600 and again in
T = 700 − 900. During the silent mode, the nodes do
not execute the FGA to correct their directions and speed,
which results in reduced NAC values. We can observe
that following silent periods, FGA significantly improves
NAC values after T = 300 − 400, T = 600 − 700 and
T = 900− 1000.

CONCLUSIONS

In this paper, we study the effectiveness of FGA, which
was introduced in (Sahin et al., 2008a; Urrea et al., 2008a;
Sahin et al., 2008b) to handle harsh conditions that may
be present at military applications. In this framework, the
mobile nodes are deployed over an unknown territory,
where there are arbitrarily placed obstacles to prevent
the free movement of the nodes, and hostile activities
resulting in loss of nodes and/or communication. FGA,
running locally at each mobile node, adjusts the location,
speed, and direction of each node through the tournament,
crossover, and mutation operations defined for GAs to
obtain a uniform node distribution. In FGA, the genetic
information used by each node is locally obtained from
its immediate neighbors. Simulation results show that
FGA can be deployed successfully under conditions
similar to military applications.

Future work will include the introduction of a mathe-
matical model to formally prove the convergence of FGA.
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